Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905064

RESUMEN

Borderline personality disorder (BPD) is a severe personality disorder whose neural bases are still unclear. Indeed, previous studies reported inconsistent findings concerning alterations in cortical and subcortical areas. In the present study, we applied for the first time a combination of an unsupervised machine learning approach known as multimodal canonical correlation analysis plus joint independent component analysis (mCCA+jICA), in combination with a supervised machine learning approach known as random forest, to possibly find covarying gray matter and white matter (GM-WM) circuits that separate BPD from controls and that are also predictive of this diagnosis. The first analysis was used to decompose the brain into independent circuits of covarying grey and white matter concentrations. The second method was used to develop a predictive model able to correctly classify new unobserved BPD cases based on one or more circuits derived from the first analysis. To this aim, we analyzed the structural images of patients with BPD and matched healthy controls (HCs). The results showed that two GM-WM covarying circuits, including basal ganglia, amygdala, and portions of the temporal lobes and of the orbitofrontal cortex, correctly classified BPD against HC. Notably, these circuits are affected by specific child traumatic experiences (emotional and physical neglect, and physical abuse) and predict symptoms severity in the interpersonal and impulsivity domains. These results support that BPD is characterized by anomalies in both GM and WM circuits related to early traumatic experiences and specific symptoms.


Asunto(s)
Experiencias Adversas de la Infancia , Trastorno de Personalidad Limítrofe , Niño , Humanos , Trastorno de Personalidad Limítrofe/psicología , Bosques Aleatorios , Encéfalo , Personalidad , Imagen por Resonancia Magnética
2.
Brain Behav ; 12(6): e2597, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35560984

RESUMEN

BACKGROUND: Over the past years, electroencephalography (EEG) studies focused on task-related activity to characterize cortical responses associated with emotion regulation (ER), without exploring the possibility that regulating emotions can leave a trace in the brain by affecting its oscillatory activity. Demonstrating whether the effect of regulation alters the brain activity after the session and whether this reflects an increased cognitive regulatory ability has great relevance. METHODS: To address this issue, 5 min of electrical brain activity at rest were recorded before and after (1) one session in which participants perceived and regulated (through distancing) their emotions (regulation session, ReS), and (2) another session in which they only perceived emotions (attend session, AtS). One hundred and sixty visual stimuli were presented, and subjective ratings of valence and arousal of stimuli were recorded. RESULTS: Behavioral results showed the efficacy of the regulation strategy in modulating both arousal and valence. A cluster-based permutation test on EEG data at rest revealed a significant increase in theta and delta activity after the ReS compared to the AtS, suggesting that regulating emotions can alter brain activity after the session. CONCLUSIONS: These results allowed us to outline a comprehensive view of the neurophysiological mechanisms associated with ER, as well as some possible implications in psychotherapy.


Asunto(s)
Electroencefalografía , Emociones , Nivel de Alerta/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Emociones/fisiología , Humanos
3.
Front Hum Neurosci ; 16: 773593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280205

RESUMEN

Child trauma plays an important role in the etiology of Bordeline Personality Disorder (BPD). Of all traumas, sexual trauma is the most common, severe and most associated with receiving a BPD diagnosis when adult. Etiologic models posit sexual abuse as a prognostic factor in BPD. Here we apply machine learning using Multiple Kernel Regression to the Magnetic Resonance Structural Images of 20 BPD and 13 healthy control (HC) to see whether their brain predicts five sources of traumas: sex abuse, emotion neglect, emotional abuse, physical neglect, physical abuse (Child Trauma Questionnaire; CTQ). We also applied the same analysis to predict symptom severity in five domains: affective, cognitive, impulsivity, interpersonal (Zanarini Rating Scale for Borderline Personality Disorder; Zan-BPD) for BPD patients only. Results indicate that CTQ sexual trauma is predicted by a set of areas including the amygdala, the Heschl area, the Caudate, the Putamen, and portions of the Cerebellum in BPD patients only. Importantly, interpersonal problems only in BPD patients were predicted by a set of areas including temporal lobe and cerebellar regions. Notably, sexual trauma and interpersonal problems were not predicted by structural features in matched healthy controls. This finding may help elucidate the brain circuit affected by traumatic experiences and connected with interpersonal problems BPD suffer from.

4.
Front Psychiatry ; 13: 804440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295769

RESUMEN

Previous morphometric studies of Borderline Personality Disorder (BPD) reported inconsistent alterations in cortical and subcortical areas. However, these studies have investigated the brain at the voxel level using mass univariate methods or region of interest approaches, which are subject to several artifacts and do not enable detection of more complex patterns of structural alterations that may separate BPD from other clinical populations and healthy controls (HC). Multiple Kernel Learning (MKL) is a whole-brain multivariate supervised machine learning method able to classify individuals and predict an objective diagnosis based on structural features. As such, this method can help identifying objective biomarkers related to BPD pathophysiology and predict new cases. To this aim, we applied MKL to structural images of patients with BPD and matched HCs. Moreover, to ensure that results are specific for BPD and not for general psychological disorders, we also applied MKL to BPD against a group of patients with bipolar disorder, for their similarities in affective instability. Results showed that a circuit, including basal ganglia, amygdala, and portions of the temporal lobes and of the orbitofrontal cortex, correctly classified BPD against HC (80%). Notably, this circuit positively correlates with the affective sector of the Zanarini questionnaire, thus indicating an involvement of this circuit with affective disturbances. Moreover, by contrasting BPD with BD, the spurious regions were excluded, and a specific circuit for BPD was outlined. These results support that BPD is characterized by anomalies in a cortico-subcortical circuit related to affective instability and that this circuit discriminates BPD from controls and from other clinical populations.

5.
Brain Res ; 1762: 147401, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675742

RESUMEN

According to the nosological classification, Bipolar Disorder (BD) and Borderline Personality Disorder (BPD) are different syndromes. However, these pathological conditions share a number of affective symptoms that make the diagnosis difficult. Affective symptoms range from abnormal mood swings, characterizing both BD and BPD, to regulation dysfunctions, more specific to BPD. To shed light on the neural bases of these aspects, and to better understand differences and similarities between the two disorders, we analysed for the first time gray and white matter features of both BD and BPD. Structural T1 images from 30 patients with BD, 20 with BPD, and 45 controls were analysed by capitalizing on an innovative whole-brain multivariate method known as Source-based Morphometry. Compared to controls, BD patients showed increased gray matter concentration (p = .003) in a network involving mostly subcortical structures and cerebellar areas, possibly related to abnormal mood experiences. Notably, BPD patients showed milder alterations in the same circuit, standing in the middle of a continuum between BD and controls. In addition to this, we found an altered white matter network specific to BPD (p = .018), including frontal-parietal and temporal regions possibly associated with dysfunctional top-down emotion regulation. These findings may shed light on a better understanding of affective disturbances behind the two disorders, with BD patients more characterized by abnormalities in neural structures involved in mood oscillations, and BPD by deficits in the cognitive regulation of emotions. These results may help developing better treatments tailored to the specific affective disturbances displayed by these patients.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Behav Brain Res ; 406: 113228, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33684426

RESUMEN

Bipolar disorder is an affective disorder characterized by rapid fluctuations in mood ranging from episodes of depression to mania, as well as by increased impulsivity. Previous studies investigated the neural substrates of bipolar disorder mainly using univariate methods, with a particular focus on the neural circuitry underlying emotion regulation difficulties. In the present study, capitalizing on an innovative whole-brain multivariate method to structural analysis known as Source-based Morphometry, we investigated the neural substrates of bipolar disorder and their relation with impulsivity, assessed with both self-report measures and performance-based tasks. Structural images from 46 patients with diagnosis of bipolar disorder and 60 healthy controls were analysed. Compared to healthy controls, patients showed decreased gray matter concentration in a parietal-occipital-cerebellar network. Notably, the lower the gray matter concentration in this circuit, the higher the self-reported impulsivity. In conclusion, we provided new evidence of an altered brain network in bipolar disorder patients related to their abnormal impulsivity. Taken together, these findings extend our understanding of the neural and symptomatic characterization of bipolar disorder.


Asunto(s)
Trastorno Bipolar/patología , Trastorno Bipolar/fisiopatología , Cerebelo/patología , Sustancia Gris/patología , Conducta Impulsiva/fisiología , Red Nerviosa/patología , Lóbulo Occipital/patología , Lóbulo Parietal/patología , Adulto , Trastorno Bipolar/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Adulto Joven
7.
Brain Sci ; 10(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198228

RESUMEN

According to psychoanalysis, anxiety signals a threat whenever a forbidden feeling emerges. Anxiety triggers defenses and maladaptive behaviors, thus leading to clinical problems. For these reasons, anxiety regulation is a core aspect of psychodynamic-oriented treatments to help clients. In the present theoretical paper, we review and discuss anxiety generation and dysregulation, first from a neural point of view, presenting findings from neuroimaging and psychophysiological studies. The aim is to trace parallels with psychodynamic theories of anxiety. Then, we discuss the psychological mechanisms and neural bases of emotion regulation in the laboratory, and possible neurobiological mechanisms of anxiety regulation in psychotherapy. We describe two different approaches to emotion/anxiety regulation, one based on the standard cognitive model of emotion regulation, the other based on psychodynamic principles and affective neuroscience. We then illustrate in detail a dynamic experiential approach to regulation. This model claims that emotions arise before cognition and are not inherently dysregulated. Dysregulation emerges from co-occurrences of emotions and associated anxiety. Technical consequences of this model are discussed and include strategies to regulate anxiety.

8.
Front Psychol ; 11: 930, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581903

RESUMEN

The aim of this article is to present recent applications of emotion regulation theory and methods to the field of psychotherapy. The term Emotion Regulation refers to the neurocognitive mechanisms by which we regulate the onset, strength, and the eventual expression of our emotions. Deficits in the regulation of emotions have been linked to most, if not all, psychiatric disorders, with patients presenting either dysregulated emotions, or dysfunctional regulatory strategies. We discuss the implications of regulating emotions from two different theoretical perspectives: the Cognitive Emotion Regulation (CER), and the Experiential-Dynamic Emotion Regulation (EDER) model. Each proposes different views on how emotions are generated, dysregulated and regulated. These perspectives directly influence the way clinicians treat such problems. The CER model views emotional dysregulation as due to a deficit in regulation mechanisms that prioritizes modifying or developing cognitive skills, whilst the EDER model posits emotional dysregulation as due to the presence of dysregulatory mechanisms that prioritizes restoring natural regulatory processes. Examples of relevant techniques for each model are presented including a range of cognitive-behavioral, and experiential (including both dynamic and cognitive) techniques. The aim of the paper is to provide a toolbox from which clinician may gain different techniques to enhance and maintain their patient's capacity for emotional regulation. Finally, the biological mechanisms behind the two models of emotion regulation are discussed as well as a proposal of a dual route model of emotion regulation.

9.
Neuroimage Clin ; 23: 101854, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31121524

RESUMEN

Despite the traditional view of Schizophrenia (SZ) and Bipolar disorder (BD) as separate diagnostic categories, the validity of such a categorical approach is challenging. In recent years, the hypothesis of a continuum between Schizophrenia (SZ) and Bipolar disorder (BD), postulating a common pathophysiologic mechanism, has been proposed. Although appealing, this unifying hypothesis may be too simplistic when looking at cognitive and affective differences these patients display. In this paper, we aim to test an expanded version of the continuum hypothesis according to which the continuum extends over three clusters: the psychotic, the cognitive, and the affective. We applied an innovative approach known as Source-based Morphometry (SBM) to the structural images of 46 individuals diagnosed with SZ, 46 with BD and 66 healthy controls (HC). We also analyzed the psychological profiles of the three groups using cognitive, affective, and clinical tests. At a neural level, we found evidence for a shared psychotic core in a distributed network involving portions of the medial parietal and temporo-occipital areas, as well as parts of the cerebellum and the middle frontal gyrus. We also found evidence of a cognitive core more compromised in SZ, including alterations in a fronto-parietal circuit, and mild evidence of an affective core more compromised in BD, including portions of the temporal and occipital lobes, cerebellum, and frontal gyrus. Such differences were confirmed by the psychological profiles, with SZ patients more impaired in cognitive tests, while BD in affective ones. On the bases of these results we put forward an expanded view of the continuum hypothesis, according to which a common psychotic core exists between SZ and BD patients complemented by two separate cognitive and affective cores that are both impaired in the two patients' groups, although to different degrees.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/psicología , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...